Role of Disulfide Cross-Linking of Mutant SOD1 in the Formation of Inclusion-Body-Like Structures
نویسندگان
چکیده
BACKGROUND Pathologic aggregates of superoxide dismutase 1 (SOD1) harboring mutations linked to familial amyotrophic lateral sclerosis (fALS) have been shown to contain aberrant intermolecular disulfide cross-links. In prior studies, we observed that intermolecular bonding was not necessary in the formation of detergent- insoluble SOD1 complexes by mutant SOD1, but we were unable to assess whether this type of bonding may be important for pathologic inclusion formation. In the present study, we visually assess the formation of large inclusions by fusing mutant SOD1 to yellow fluorescent protein (YFP). METHODOLOGY/PRINCIPAL FINDINGS Experimental constructs possessing mutations at all cysteine residues in SOD1 (sites 6, 57, 111, and 146 to F,S,Y,R or G,S,Y,R, respectively) were shown to maintain a high propensity of inclusion formation despite the inability to form disulfide cross-links. Interestingly, although aggregates form when all cysteines were mutated, double mutants of the ALS mutation C6G with an experimental mutation C111S exhibited low aggregation propensity. CONCLUSIONS/SIGNIFICANCE Overall, this study is an extension of previous work demonstrating that cysteine residues in mutant SOD1 play a role in modulating aggregation and that intermolecular disulfide bonds are not required to produce large intracellular inclusion-like structures.
منابع مشابه
A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis.
One of the mechanisms by which mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS) is proposed to involve the accumulation of detergent-insoluble, disulfide-cross-linked, mutant protein. Recent studies have implicated cysteine residues at positions 6 and 111 as critical in mediating disulfide cross-linking and promoting aggregation. In the present stud...
متن کاملRole of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS.
Transgenic mice that model familial (f)ALS, caused by mutations in superoxide dismutase (SOD)1, develop paralysis with pathology that includes the accumulation of aggregated forms of the mutant protein. Using a highly sensitive detergent extraction assay, we traced the appearance and abundance of detergent-insoluble and disulfide cross-linked aggregates of SOD1 throughout the disease course of ...
متن کاملAn In Vitro Model for Lewy Body-Like Hyaline Inclusion/Astrocytic Hyaline Inclusion: Induction by ER Stress with an ALS-Linked SOD1 Mutation
Neuronal Lewy body-like hyaline inclusions (LBHI) and astrocytic hyaline inclusions (Ast-HI) containing mutant Cu/Zn superoxide dismutase 1 (SOD1) are morphological hallmarks of familial amyotrophic lateral sclerosis (FALS) associated with mutant SOD1. However, the mechanisms by which mutant SOD1 contributes to formation of LBHI/Ast-HI in FALS remain poorly defined. Here, we report induction of...
متن کاملLoss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase
Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When ag...
متن کاملComplete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012